ジェネレーティブ AI の市場分析
市場統計
勉強期間 | 2017 - 2030 |
2023 市場規模 | USD 12.0 Billion |
2024 市場規模 | USD 15.6 Billion |
2030予報 | USD 81.1 Billion |
成長率(CAGR) | 31.6% |
最大の地域 | 北米 |
最も急速に成長している地域 | アジア太平洋 |
市場の性質 | 連結 |
最大のアプリケーション | NLP |
市場規模の比較

市場関係者

主要なレポートのハイライト
- バリューチェーン分析
- 規制の状況
- 最近の戦略的な展開
- 主な利害関係者
- テクノロジーロードマップ
- 将来の機会
- 市場指標
- 競合分析
|
データ主導のレポートで市場の可能性を探る
2023年、生成AI産業の規模は120億米ドルで、10年後には811億米ドルにまで拡大すると予測されており、予測期間(2024~2030年)中に年平均成長率31.6%で成長すると見込まれています。この技術は、イノベーションと自動化の新たな機会を提供することで市場全体を変える可能性を秘めているため、この産業は活況を呈しています。
生成 AI は、テキスト、音声、画像などのトレーニング データを利用してリアルなコンテンツを作成できるアルゴリズムで構成されています。たとえば、ChatGPT は、要約、感情分析、質問への回答などのタスクを実行するために、広範なテキスト コーパスでトレーニングされています。生成的敵対ネットワーク (GAN) の主な目的は、提供されたデータセットによく似た新しいデータを生成することです。従来の AI モデルとは異なり、これらの高度なモデルはディープラーニングを活用してデータ サンプルを作成します。これらはマルチモーダルであり、複数のプロセスを同時に管理できます。これらのモデルは、自然言語処理 (NLP) の進歩を通じて、人間と機械の相互作用を強化しました。
多くの組織が、ChatGPT や Bard (現在の Gemini) に似た、ユーザー入力を受け取りテキスト応答を生成するチャットボット ベースのアプリケーションを開発しています。これらのアプリケーションは、ユーザーが問題や問い合わせを解決するのに役立ちます。このような AI モデルは、作業生産性を約 40% 向上させる可能性があり、さまざまな業界で大きな利益につながる可能性があります。車両に搭載されたカメラやセンサーを通じて交通データを分析し、最適なルートを提案することで、交通渋滞などの複雑な世界的課題に対処できます。
市場セグメンテーションの分析
ジェネレーティブAIコンポーネントインサイト
- 2023年には、ソフトウェアカテゴリーが市場で約55%という大きな収益シェアを占めることになります。
- ソフトウェアはこの業界の基盤であり、生成 AI アプリケーションに不可欠なアルゴリズム、フレームワーク、ツールを提供します。
- このようなソフトウェア コンポーネントは拡張性と適応性に優れているため、組織は特定のニーズを満たすためにそれらを選択できます。ソフトウェア ツールを使用すると、顧客は新しい AI テクノロジーを活用できるだけでなく、新しいコンテンツの作成やデザインの強化など、創造性を発揮する新たな機会も得られます。
- ソフトウェア コンポーネントの機能は、アルゴリズム技術や並列計算の改善など、継続的に強化されています。
- AI ソフトウェアは機械学習の統合により急速に進歩しており、旅行、ファッション、エンターテインメントなどの主要かつ重要な分野でもますます重要になっています。
- たとえば、アディダスもこのソフトウェアを使用してカスタマイズされた靴を製造しています。

調査中、レポートでは次の 2 つの要素が取り上げられます。
- ソフトウェア(大カテゴリ)
- サービス(急成長カテゴリー)
アプリケーションインサイト
- 自然言語処理カテゴリは業界シェアが最も大きく、予測期間中に 31.8% という大幅な CAGR で成長すると予測されています。
- NLP の進歩により、高度な言語モデルとテキストの開発が促進されています。これらの改善により、コンテンツ作成、人工知能、チャットボットなど、さまざまなアプリケーションが変革されています。
- 仮想プラットフォームの広範な使用により、膨大な量の書面データが生成されています。NLP は、この書面データを抽出して分析するための効果的なツールを提供することで、組織が顧客エクスペリエンスを向上させ、データに基づいた意思決定を行い、競争上の優位性を獲得するのに役立ちます。
- NLP は、テキストを処理して生成する能力があるため、カスタマイズされた提案や感情分析の分野で現在重要な役割を果たしています。
- 対話と理解に対する需要の高まりにより、市場は拡大しています。自然言語を理解して応答する能力を備えた NLP は、人間と機械のシームレスなコミュニケーションを促進します。
- その結果、音声アシスタント、人工エージェント、自動音声処理システムで NLP が広く使用されるようになりました。
このレポートで取り上げられている主なアプリケーションは次のとおりです。
- コンピュータービジョン(最も急成長している分野)
- 自然処理言語(最大カテゴリ)
- ロボット工学と自動化
- コンテンツ生成
- チャットボットとインテリジェント仮想アシスタント
- 予測分析
- その他
エンドユーザーの洞察
- エンドユーザーベースでは、メディアとエンターテインメントのカテゴリが業界を支配しており、予測期間中に 40% の CAGR で成長すると予測されています。
- これは、メディアおよびエンターテインメント業界がコンテンツの制作と配信を進化させるために AI ツールを急速に導入したためです。
- 開発者、ゲーマー、コンテンツ クリエイターなど、この分野の誰もが AI モデルの助けを借りて、より芸術的で創造的なものを体験できます。
- 2023年1月、アメリカのメディア・エンターテインメント企業BUZZFeed社は、OpenAIのAIツールを使用して特定のサービスを強化およびカスタマイズする計画を発表しました。
このレポートに含まれるエンドユーザーは次のとおりです。
- メディアとエンターテイメント(最大カテゴリ)
- ITおよび通信
- BFSI(最も急成長しているカテゴリー)
- ヘルスケアとライフサイエンス
- 自動車・輸送
- 製造業
- 建設・不動産
- エネルギーと公共事業
- 小売業と電子商取引
- その他
モデルの洞察
- 予測期間を通じて、LLM カテゴリーが約 40% と最大のシェアを占めます。
- これは、エンターテインメント業界やソフトウェア業界など、さまざまな分野や組織で主に使用されているためです。
- 生産性の向上とパーソナライズされた顧客体験の提供を目指す組織では、人間の言語を解釈して理解する優れた能力を持つこれらのモデルを採用するケースが増えています。
- 拡張性、生産性、より直感的なインターフェースにより、企業や組織がシステムに統合することがはるかに簡単になりました。
- このアプローチを採用している組織では、顧客満足度と生産性が大幅に向上し、収益の増加と競争上の利点が生まれています。
市場の主なモデルは次のとおりです。
- 大規模言語モデル(最大カテゴリ)
- 画像とビデオ生成モデル
- マルチモーダル生成モデル(最も急成長しているカテゴリ)
- その他
テクノロジーインサイト
- トランスフォーマーのカテゴリーは、NLP と出力生成において優れた能力を提供するテクノロジーとして業界をリードしています。
- モデルを順番に配置するというユニークなアプローチは、連続したデータの理解と把握を可能にしたトランスフォーマー技術によって可能になりました。
- その成功は、適応性と拡張性にも起因しています。短いシーケンスと長いシーケンスの両方を処理できるため、音楽生成や画像合成など、さまざまなアプリケーションに最適です。
- 自然言語の開発分野で優れたパフォーマンスを発揮しています。論理的かつ文脈的に関連性のあるテキストを作成できるため、チャットボットやコンテンツ生成にとって重要なツールです。
このレポートで分析されたテクノロジーは次のとおりです。
- 生成的敵対ネットワーク
- トランスフォーマー(最大カテゴリ)
- 変分オートエンコーダ
- 拡散ネットワーク(最も急成長しているカテゴリ)
包括的な市場分析で戦略的成長を推進する